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SUMMARY 

A general expression for the sound f ield of a point force in arbitrary motion i s  found. 

The expression reduces to the classical results for both uniform recti l inear motion and 

uniform circular motion of a point force. The solution shows that a fluctuating force 

i n  motion w i l l  have two components in  i t s  radiative sound field; the first an essentially 

dipole term due to the time rate of change of the force, and the second an essentially 

quadrupole term due to the acceleration of the system in which the force i s  acting. 

This second effect has not been expl ic i t ly  recognized in previous work. Applications 

include the vortex noise in  rotating systems and helicopter main rotor noise. 

An expression for the sound f ie ld of a point source in arbitrary motion i s  also determined. 

This expression does not reduce to the classical result for uniform motion, and it i s  

concluded that the classical result does not take proper account of the momentum 

output associated with the source. The present result also shows that a constant velocity 

mass source moving in an acceleratile manner w i l l  radiate sound. A practical example 

i s  the t ip  iet  rotor. 

The sound f ield for a point acoustic stress in  arbitrary motion i s  determined and the 

accelerative effects are shown to produce higher order poles than the quadrupole 

normally associated with the acoustic stress tensor. Some preliminary interpretation 

of this result i s  presented. 

acoustic sources may be found by integration, and in a l l  cases the effect of the 

In a l l  three cases the effect of a volume distribution of 

acceleration terms becomes greater as speed i s  increased. 
I 



1 .  I n trod IJ c t i on 

For over a century i t  has been known that motion has an important effect on 

sound generation. The wel l  known Doppler effect on frequency was first 

shown in 1842, and more recently the prediction of the effects of source 

convection formed an important part of the work of Lighthil l  (1952) "On 

Sound Generated Aerodynamically". 

attention has been focussed on source convection a t  constant velocity. For 

example, the sound f ie ld for a paint force in  uniform recti l inear motion i s  

given by Lighthil l  (1962) as 

In this paper, and others on the subiect, 

Here x. , yi  ( i = 1 ,  2, 3) are the Cartesian coordinates of observer and source 

respectively, and M i s  the component of convection Mach number in  the direction r 

of the observer. 

sound would be radiated. This i s  indeed true for the uniform motion of a 

constant force i n  a straight line but i t  i s  known that convection of constant 

forces can give rise to  radiated sound. The sound generation by propeller 

thrust forces i s  a case i n  point. 

I 

r w 

Equation ( 1 )  implies that i f  the force were constant no 

It appears that the assumptions made in the derivation of equation ( 1 )  have 

been sufficiently restrictive to  remove some of  the terms giving rise to radiated 

sound. Physical intuit ion suggests the possible importance of the acceleration 



effects which have been removed from equation (1) by restriction to the case 

of constant velocity. 

acceleraiions would play a part in the noise generation by propeller thrust 

forces. Further, the well-known effect of shock wave generation by an 

accelerating piston calls attention to the possibility of a parallel acoustic case. 

For example, i t  might be expected that centrifugal 

The object of this paper i s  to derive the equations of the sound fields for 

singularities in  motion under less restrictive assumptions, and to investigate 

some of the additional effects that appear. The sound fields for extended 

distributions of acoustic sources may be readily obtained by integration, but 

the evaluation of these integrals w i l l  depend cr i t ical ly on the retarded time 

differences occurring wi th in each source distribution. 

extent of a source i s  small compared with a typical wavelength of the sound 

generated, then the retarded t ime differences are small and the source may 

again be reduced, for calculation purposes, to an acoustic point singularity. 

However, when the 

In the work which follows, the sound f ie ld for a point force in arbitrary 

motion i s  first found and the effects of acceleration discussed. The result 

i s  used to calculate the sound radiation from a propeller and alsofor more 

general rotary cases. A dimensional analysis i s  used to obtain a preliminary 

estimate of the relative magnitudes of the sound generated during uniform and 

accelerated motions, and i t  i s  shown that acceleration effects w i l l  generally 

become more imporfant at higher velocities. Finally the results for both simple 



point sources and for point acoustic stresses in motion ore found. The effect 

of arbitrary motion on the sound radiation of a simple source i s  readily understood, 

but only a preliminary interpretation of the result for the acoustic stress i s  given. 



2. The General Equation for Sound Generation 

Lighthil l  (1952) showed how the exact equations for sound generation could 

be obtained directly from the exact equations of aerodynamics. 

L ighthi l l ,  the equation for conservation of mass i s  written, in  tensor notation, as 

Following 

I ax. 
I 

at  

where Q i s  the rate of introduction of mass per uni t  volume. The equation 

for conservation of momentum i s  

where F. i s  the external force per unit volume acting on the f lu id.  

equation (3) gives 

Rewriting 
I 

a * 
= - - (T..) + F. 

ax. ax I 

a 
--(Vi) + a a t  

I i 

where 

9 
L 

T.. = ~ v . v .  + p . . - a  p 6 . .  
Ib ' k  IC O Ik 

(4) 

(5) 

T.. may be regarded as an "acoustic stress" 
IC 



Eliminating p v. between (2 )  and (4) by differentiation and subtraction gives 

f ina I l y  

I 

2 aF. a Q a T.. 

ax. ax a x .  a t  

l 
- 

a2P 2 - - ' c - - + -  a2 P 

2 ax. 2- Oo 
at 

I ' i -  I 

The left-hand side of equation (6) i s  recognizable as the equation for sound 

propagation in a uniform acoustic medium at rest. The terms on the right are 

volume distributions representing the various possible sources of sound present 

in  the f luid. 

The solution to (6) (for an unbounded f luid) i s  we11 known. 

side of (6) i s  written as g ( y )  the solution to (6) i s  

If the right-hand 

I*I 

The square brackets imply evaluation at  the retarded time t '  = t - r/ao where 

t i s  the time of observation and r i s  the distance from source to observer. 

y i s  a dummy variable of integration referring to the source position. 
w 



The Sound Field for a Point Force in Motion 

The acoustic effects of a volume distribution of foices are found by putting 

-- - 3 .  

a F. 

a Y;  
I 

g : - -  

as suggested by equation (6). Using (7) the sound f ie ld may be written down as 

1 

4~r a 
p - p o =  - - 2 i[: :] d v  

0 

The reduction of the volume disti-ibution of forces in equation (8) to  the 

particular case of a point force may be accomplished by an appropriate 

inttoduction of  three-dimensional Dirac 5 functions. I t  ij tempting to 

introduce the 6 function as a multiple inside the square brackets at equation 

(8),  but in fact i t  i s  necessary to introduce the b function within the differential 

replacing F. by F.6. The new F. may be regarded as a function of time only. 

Introduction of the 6 function outside the differential would be a means of 

representing the effects of a concentrated force gradient and, although 

leading to  a va l id  mathematical result, this case i s  not of pi-actical interest. 

The sound f ie ld from a point force i s  thus given directly from (8) as 

I I I 



In equation ( 9 )  S = 6 (y - y ) so that y i s  the position of existence of the 
w d o  W O  

S function. In order to study the effect of a moving point force it i s  sufficient 

to let y be a function of the time t .  
U O  

The evaluation of the integral in equation ( 9 )  depends cr i t ical ly on a proper 

treatment of the square brackets, which require evaluation of their contents 

a t  the retarded time t '  = t - r/a . The square brackets may be treated as 

the retarded time operator, and laws estab ished for their effects. 

0 

Consider any function f ( y ,  t ) .  The chain rule shows 
*.N 

-[f] = [' + (x. - Yi) 

a t  

I 
a 

a Y; aY i a r  
0 

Note also 

a 
- at [fl = [g] 

Now for the moving singularity 

where y i s  the component of y in  the i direction. 
o i  -0 



Thus from (10) and ( 1  l ) ,  wi th  some rearrangement 

a M. a 

Here M i s  the component of the instantaneous convection Mach number in the 

direction r of the observer. In the terminology of Lighthil l  (1952) M = 

r 

r u 

M cos e.  AI^^ 
C 

(x .  - yi) M. 
I I 

M =  
r r 

i s  the component of the instantaneous convection Mach 
'oi 

1 

I a at 
- -  where M. = 

0 

number M in the i direction. 
rm 

N o w  using (10) and (12) in ( 9 )  

P - Po 
1 

2 - -  47r a 0 1" jRGi 

(x. - yi) F.M. 
dv 

at a r  
. o  



The first and third terms in the integral may be rearranged 

differentiation of [ S ]  by applying a form of Green's ident 

I 

av. 

a x. 

I 
au 

V. + CI - 
I 

I 

U V. n. ds = 
I I  

I 

to eliminate the 

ty viz: 

dv 

Since, i n  each case, the surface integral vanishes i f  the contour does not 

pass through a singularity, (14) may be rewritten as 

1 

47 a 
P - Po 2 

Now 

To evaluate the integral of [SI the variable i s  changed from y to  q where 
w v 



This w i l l  introduce the Jacobian of the transformation which may readily be 

calculated to  give 

Equation (15) may now be integrated directly, yielding 

1 a (x. - y;) aF. 

P - Po - - 45r a 2  0 [1 - MJ 1 -[I]+ ayi [ a ' ?  0 21 
a - yi) Fi M. 

r ( 1 - M )  

where a l l  quantities in (16) are evaluated on the path of the singularity. 

(10) on the last term of (16), only the radiative terms are retained to  give 

Using 

(.. - yi) (.. - y.) a 

at  

k b  - I 
(xi - yi) aF. 

I 
1 

- 
3 + - - 

a r  
4ma* 0 P-Md [ a  0 at  0 

P - Po 

k '  
1 - M  

and performing the differentiation on the last term gives the far f ie ld sound 

radiation from a point force in arbitrary motion as 



This  equation i s  the basic result of the paper. 

r 
aM 

In equation (17) - i s  the component of acceleration in  the A direction 
at 

(x. - yi) aM. 
I I 

aM 
r -  - -  

at r at 

Examination of equation (17) shows first of a l l  that there are two terms. 

For constant convection velocity the second vanishes and the expression 

reduces to the accepted result for a point force convected at uniform speed 

as given in equation (1). But if the motion i s  accelerative, then there i s  

a second term present which w i l l  give rise to a radiated sound f ie ld  even 

when the applied force i s  constant. 

The near f ie ld  terms may also be calculated, and are found to be 

2 1 I F i  (Xi - Y;) (1  - M ) 
- F. I I  M. I] (18) 

r ( 1  - M )  
P - P o  = [  2 2  

r 
4r a2 (1-M ) r 

0 r 

The near f ie ld terms given by equation (18) show no dependence on the acceleration, 

and are in  fact identical to the case of convection at  constant velocity. 



4 D imensiona I Ana lysis of the Sound Generated 

In the light of equation (17) i t  i s  now possible to make some general comments 

on the effects of acceleration on the noise generation of a moving force, 

and of the importance of  the various parameters in  the overall sound production. 

2 2 .  
By putting F cc po U 1 1.e. a typical pressure multiplied by a typical at-ea, 

then equation (17) shows 

1 aM!- I 

r 
aM 

where n i s a  typical frequency. A typical value of - wil  I depend on 

r Invoking 
a M~~ tin 

the system under consideration, but in  many cases- E- 
at  a 

0 

constancy of Strouhal number, and putting n oc U 9, yields f inal ly 

The first t e n  i n  equation (17) gave the conventional dipole result for uniformly 

moving forces. Similarly, the first term i n  equation (19)  shows dipole dependence 

on velocity and convection Mach number. 

4 -3 
(19), which corresponds to the acceleration effects i s  dependent on U (1-M ) r 

This dependence i s  typical of the uniformly convected quadrupoles investigated 

But the second term i n  equation 



by Lighthil l  (1952) and leads to the suggestion that it may be useful to 

consider the sound output from a generally moving force as composed of 

two parts: A dipole contribution from the fluctuating part of the force, 

and a quadrupole contribution due to the acceleration effects, which may 

be expected to  be particularly important a t  high velocities. Additional 

support for this viewpoint comes from a further examination of equation 

( 1  7). The first term has a two lobe space distribution, whereas the second 

term has a four lobe distribution, so that the order of spherical harmonic 

associated with each term i s  again that appropriate to the dipole and 

quadrupole respectively. 

The distinction between the various orders of acoustic radiation i s  often 

drawn from the form of the acoustic forcing function on the right-hand 

side of equation (6). Monopole, dipole and quadrupole types of radiation 

are associated with zero, one and two space derivatives respectively. 

the present case the quadrupole-like radiation patterns have arisen from an 

acoustic forcing function with only one space derivative, so that class- 

i f icat ion as dipole or quadrupole radiation depends on the choice of definit ion. 

However, the sound radiation due to the acceleration effects of moving forces 

seems to be most consistently classified as a quadrupole f ie ld.  I t  should be 

noted that this classification i s  based only on the far f ie ld  sound radiation. 

The near f ie ld radiation in the present case i s  identical to that usually 

associated with a dipole. 

In 



5. Application to a Static Propeller 

Equation (17) may be rewritten to give the sound pressure as 

F. 
I 

aF. 

I-M at + -  r 'I (x. - Yi) I 

0 r 

Equation (20) refers to the effect of an isolated point force. 

apply it to the case of a propeller, the distributed loading over the propeller 

blade i s  reduced to an equivalent point force as i s  common in  propeller noise 

theory. 

v ia  the case of circular motion of a point force acting at some effective 

radius from the hub. In principle, the effective radius i s  that a t  which the 

point drag force gives rise to the total torque on the blade, but in  practice 

some care i s  required in  choosing a different optimum effective radius for 

the acoustic ca Icu lations. 

In order to 

The sound radiation from a static propeller may then be considered 

The distributed force on the blade i s  condensed to a single thrust T parallel 

to the propeller axis, and drag D perpendicular to and in  the plane of the 

propeller acting at  distance R from the hub. 



Set up Cartesian coordinates centered on the propeller axis with x, y, z 

corresponding to  i = 1 , 2, 3, x along the propeller axis and the observer 

in  the xy plane. Suppose the propeller i s  rotating with angular velocity 

R so that i t s  current position i s  given by 8 = R t with 8 = 0 along the 

y axis. The force on the air i s  equal and opposite to that on the blade 

and i s  thus in  a thrust in the negative x direction an a drag in the direction 

of rotation, as shown. 

If M i s  the rotational Mach number, M = R R/a 

then A = (x. - yi) = (x, y - R cos 8, - R sin e), M = (0,-M sin 9, M cos 9) 

and F. = (-T, -D sin 8,  D cos e). Substituting into equation (20) gives, 

0, 

I .wry 

I 

after some cancellation, 

(y cos e - R) 

0 

-D 
r 4.rr (1  + M y  sin e/r) a r 



A formula equaivalent to (21) was found by Van de Vooren and Zandbergen (1963). 

However, the Fourier coefficients of (21) can be evaluated. 

2 2 
N ~ W  r = j L I 2  = x 2 + y 2 +  R - 2 y   cos e 

So that i n  the far f ie ld where r > > R 

r z r - -  yR cos e 
o r  

with 

Now 

r2 = x2 + y2  + R2. Equation (21) i s  evaluated a t  the retarded time 
0 

t '  = t - r /  a and t only appears in equation (21) through 8. 
0 

r MY 
= + - <) + - r cos e 

If r i s  now regarded as constant, the problem reduces to that of the calculation 

of the Fourier coefficients in  T 
-3 

of cos 8 ( 1 t a sin 8 ) 

MY 
where 8 = T + a cose, with T = !? ( t - -  :)and a = r  

0 

Put 
cos 8 cos n T 

( 1  + asin e) 
d T  I r a  n = f  ~ 3 

a 

The limits of the integral may be over any interval of 2 ~ .  

Changing the variable by T = 8 -acOS 8 yields 



21T 
f COS 8 COS n (e - a COS e) 

But 
1 

a ( 1  + a sin e) 
2 de = - 

So that (22) may be integrated by parts to give 

sin n (e - a cos 8) de = 0 J 1 + a sin 8 
n a  = -  - 

n 
a 

0 

Applying the same technique to 

gives 

a JO 

which i s  the well-known form for BesseI functions. Hence 

2n 
b = - J ( n a )  

n a n 



where J i s  a Bessel function of the first kind and nth order. 

the present case the sound pressure f ie ld  for the circular mot 

force can be written as a Fourier series whose nth coefficien 

n 
So that i n  

on of a point 

IS 

O Y  I- 2n J (y)  
4rr a r M y/r 

2 n 
0 

I f  B equally spaced blades are present, harmonics which are not multiples 

of the number of blades w i l l  cancel giving 

I J ( m B r M y )  (24) 
m B R  Tx D 

2 n a  r r M 
- - -  

mB Iaml = - 
0 

The quadrupole effect of  acceleration may be observed in either equation (21) 

or (24). The noise radiation due to the drag D i s  dipole in nature, while the 

noise due to  the thrust T has the velocity and directional dependence of a 

quadrupole. 

Equation (24) i s  identical to the expression found by Gutin (1936) for the 

same case except for the t r iv ia l  difference (to the order of approximation 

considered) that instead of r , the retarded distance from the force, he has 

the distance from the propeller center. Gutin’s result has been substantiated ‘1 

by experiment. The reduction of equation (17) to this classical result provides 

a satisfying test of the present approach, particulary when the two expressions 

in i t ia l ly  appear so different. However this agreement i s  not as surprising as 



i t  might first appear since the physical basis for Gutlin's theory i s  identical 

to that of the present work, i .e .  the moving isolated force i s  replaced by a 

string of impulses acting along i t s  path at the appropriate times. 

In principle, the extension of equation (17) to cover the distributions of  forces 

acting on the blade i s  a straightforward integration over the desired area 

of action. The use of equation (17) or its particular case (21) w i l l  generally 

be convenient in computational methods, particularly i f  the higher harmonics 

of the sound pressure are required. 



6. Vortex Noise from Rotating Systems and Helicopter Noise 

Equation (17) represents the far f ie ld  pressure for a quite arbitrary motion. 

In practice, however, most systems w i l l  be moving in some more regular 

manner. Two cases in  which the noise has to be calculated for fluctuating 

forces on a system with acceleration are the vortex noise from rotating systems 

and helicopter noise. Subjectively, the vortex or random p3rt of the noise 

from a rotating system seems considerably higher than would be expected i f  

an equivalent cascade of blades were moving l inearly. Equation (17) shows 

part of the reason why this i s  so. The vortex noise i s  caused by the passage 

over the blades of the random pressure patterns associated with the turbulent 

boundary layer. Equation ( 1  7 )  shows that these random pressures have two 

effects. Firstly, they w i l l  radiate noise by reason of their rate of change. 

Secondly, the instantaneous pressure pattern over the blades w i l l  radiate 

noise by virtue of the centrifugal acceleration of the pattern. Calculations 

of vortex noise to date have only considered the noise due to the first effect, 

but i t  can be seen that noise from the second effect may also be important, 

particularly a t  high rotational speeds. However, a proper formulation of 

the vortex noise problem w i l l  be di f f icul t  because of the complex nature 

of the tutbulent pressure distribution over the blades. 

A similar problem arises when calculating the noise from helicopters. A 

helicopter has a high level of vortex noise, but in  addition, the spectrum 

of the main rotor rotational noise i s  typified by the presence of a large number 



of the higher harmonics of the blade passage frequency. These harmonics are 

not found in conventional propeller noise theory. 

be predicted by an application of equation (17), which w i l l  enable the large 

cycl ic changes in blade loading to be included in  the calculation. 

I t  i s  hoped that they can 

The complete equation for the noise generation by an arbitrary point force 

i n  a convected rotating system may be written down using equation (17). 

The only changes required from the case of the propeller are that the thrust 

and drag forces become functions of time, and the convection Mach number 

i s  M = (Mo 1, Mo2 - M sin 8, Mo3 - M cos e) where M i s  the constant 

convection Mach number of the centre of the rotating system. I f  M 

W O  w 

or 

i s  the component of M in direction then the generalized form of equation 
Who 

(21) i s  

P =  

aD x a T  -n 

J {MTx - r D ( 1  - M  ) j R ( y c o s e - R )  y C s i n e +  - 
at - or 

{ r  (1  -M ) + M Y  sin e \  3 
  IT a { r (1-M ) + My sin 0) 2 

0 or 0 or 
4 n a  

(25) 

Equation (25) may be used directly for calculation of  helicopter main rotor noise, 

and w i l l  also serve as a basis for calculations of vortex noise. 

M = Q ‘/ao as before. 

In Equation (25) 



7. Simple Sources in  Motion 

The usual result for simple sources in  motion has been established by replacing 

aQ 
a t  
-in equation (6) by q. The effect of the moving point source q i s  given, 

using (7) as 

The evaluation of the integral i s  accomplished by change of variable, as in  

the case of the moving force, giving 

a - I - 
P - Po 2 

4 n a  r ( 1 - M )  
0 r 

This i s  the result quoted by Lighthil l  (1962) for the simple source moving a t  

constant velocity, although the present derivation i s  val id for an arbitrari ly 

moving q . This result i s  mathematically satisfactory and i s  equivalent to 

the scalar part of the result obtained for the f ie ld of a moving electron. In 

the case of the moving electron q does have a physical meaning, i .e.  the 

charge. But in the acoustic case q represents a double time rate of intro- 

duction of mass, and the physical interpretation i s  less direci. 



A possible practical case i s  a single time rate of introduction of mass as in  

an arbitrari ly moving jet of a i r .  The mathematical formulation of the problem 

requires the introduction of  the source term g in  equation (7) as - (Q6) rather 

than as the expression S - used above. This w i l l  give the solution as 

a 
a t  

aQ 
at 

Expanding and using (12) 

Using Green's identity and then evaluating the integral of [6] as before 

Now using ( lo) ,  the radiative terms are 

r 
1 - M  

1 
+ 

0 



and the near f ie ld terms are 

2 
Q ( M  - M )  

r - - '-" [4~r a: ( 1  - M>3 ? ]  

For the case of convection at constant velocity, equation (28) reduces to a 

result differing by a factor of (1-M ) from equation (26). Th is  result i s  

surprising, but its meaning may be clari f ied by rewrit ing equation (28) as 

r 

(x. - Yi) 
aQ 

2 = I  - 0 r 

I 

2 2 2  
4 n a  ( 1 - M )  r 

0 r 

+ a t  

4 ~ r a  ( 1 - M ) r  
P - Po 

OM. 

1 -M 

I + -  
r 

at 

(24) 

The first part of equation (30) i s  identical with equation (26) and the second part 

i s  the same as equation (17) with F. put equal to Qv., which i s  the rate of 

introduction of momentum from the moving system. Thus, the sound f ie ld  given 

by (28) i s  the sum of both mass and momentum terms. The near f ie ld terms are 

also the result of momentum input, and equation (29) may be found by putting 

F. = Ov. in  equation (18). 

I I 

I I 



Clearly the momentum terms cannot be ignored. 

case as a convected pulsating sphere the momentum i s  not instantaneously 

balanced. 

sphere, the mass output occurs at  a different location from the mass input 

and thus gives rise to a net momentum fluctuation. The sound f ie ld  i s  thus 

given by equation (28) rather than the generally accepted result of equation 

(26). 

i s  not in  question. The error lies in the incorrect modelling of the boundary 

conditions as being solely a double time rate of introduction of mass. 

Even for such an idealized 

One may imagine that, during the convection of a pulsating 

I t  should be noted that the mathematical val id i ty of equation (26) 

A dimensional analysis for this case gives l i t t le  additional information, but 

i t  i s  of interest to note from equation (30) that the radiation from an arbitrari ly 

moving "simple sourcell gives rise to three distinct orders of sound radiation: 

the pure monopole effect of the second rate of introduction of mass, the 

dipole effect of the convected momentum, and the quadrupole effect of 

acceleration. An additional result from equation (28) i s  to show that the 

introductiori of niilss at a constant rate in  an accelerated system w i l l  give 

rise to radiated noise. This  result may be applied to  t ip  jet rotors or 

similar devices, and if required, the sound f ie ld may be calculated following 

the methods of Section 5. 



8 .  Acoustic Stresses in  Motion 

The methods used to calculate the effect of a point force in motion may be 

extended to the case of an acoustic stress in  motion. The mathematical 

formulation of the problem i s  straightforward, although the algebra involved 

i s  somewhat tedious. 

Clearly, the solution for the general case of an acoustic stress in  motion i s  

given, using equations (6) and (7 ) ,  by 

As before, the reduction of this integral depends on taking proper account 

of the retarded time differences within i t .  The first requirement i s  to 

establish formulae showing the effect of the square bracket retarded time 

operator under double differentiation. Differentiating equation (10) gives, 

after some rearrangement, 

(x. - Yi) (x - y.) 
I i b a 2 f j  

a r  

- 
0 a t 2  



Differentiation of equation (12) with respect to t gives, again after 

rea rra ngem e nt , 

The only radiative term in equation (32) i s  the last, so that expanding (31) 

and using equation (101, (12), (32) and (33) gives the terms contributing to 

t h e  far field s o u n d  r a d i a t i o n  as 



N o w  using Green's Identity the appropriate number of times 

'6 
a t  2 2 3  

a r  
0 

p - p 0 =  

1 

0 \ 

I r  

dv (35) 

The integral of [6] may be evaluated as in  the case of the moving force. Then, 

using (10) and (32) i n  (35) and retaining only the radiative terms, yields, after 

much algebra, the required solution. The far f ie ld sound of a generally moving 

point acoustic stress i s  thus 

r 

3 
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n T  

r 
a2 M a T.. 

at  +'r- 4 + 2  9 

r 
aM 

aT.. 3 - T.. 2 

1 -M a t L  
r r 

a tL at I - M  



The physical interpretation of equation (36) i s  not immediately clear. The 

result should show a simple relationship to the result for the f ie ld  of a 

generally moving point force given by equation (17). 

relationship equation (1 7) i s  rewritten as, 

In order to see this 

F. 
I 

(37) 

In a letter to the writer Professor Lighthil l  showed how this form of (17) 

i s  far from being a casual relationship, and can be found directly by an 

alternative method of proof. 

for a given order of acoustic forcing function to a result for the next 

lower order. 

i t  w i l l  be observed that the term under differentiation in  Equation (37) 

i s  the solution for a zeroth order function (Equation 26). Professor Lighthil l 's 

method also gives the result for the sound f ie ld  of  an acoustic stress in 

arbitrary motion as 

His method i s  based on relating the solution 

Equation (37) gives the result for a first order function and 

( l - M ) a  r 
r o  

An acoustic stress i s  a second order forcing function and i t  may again be 

observed that the result for a first order function (Equation 37) i s  under 

differentiation in Equation (38). 



The relationship of equation (36) to equation (17) i s  apparent when they are 

written in  their alternative forms of equations (38) and (37) respectively. 

equivalence of equations (36) and (38) may be verif ied by differentiation. 

As would be expected, equation (36) reduces to the result obtained by 

Lighthi l l  (1952) for the case of convection at constant velocity. For a 

more general motion the first term of  equation (36) i s  quadrupole, the second 

two terms are octupole, and the last term i s  the next order higher pole, for 

which a consistent terminology might have the name "sexdecupole". The 

definit ion of these orders i s  based on their velocity, convection Mach 

number, and directional dependence as in the discussion of the orders for 

the case of the moving force. 

derivatives in the acoustic forcing function. 

The 

Each term i s  the result of only two space 

Equation (36) indicates that accelerated stresses would produce additional 

noise over the case of uniform convection. This effect may be of practical 

importance, for instance, i n  the calculation of the noise radiation from 

deflected jets or rockets, and the turbulent sound generation from t ip  iet 

rotors. 

However, no finn conclusions as to the practical significance of equation (36) 

can be drawn a t  this stage. The velocity dependence of the radiated sound 

intensity from the three orders of pole i s  on the eighth, tenth and twelfth 



power respectively. 

has yet found overall powers higher than the eighth, and this fact tends to  

discount any major significance of the acceleration effects. 

i s  possible that other parameters are coming into play. Lighthi l l  (1954) has shown 

how even higher powers of the velocity would be expected from the convection 

Mach number dependence of the sound radiation, but that this effect i s  

conveniently balanced by the reduction in  turbulence intensity with increase 

i n  veloci ty.  

case. 

acceleration proportional to U / e  , as i n  Section 4 .  This proportionality may not 

always occur, 

To the writer's knowledge, no experimental investigation 

However, i t  

I t  i s  possible that some similar balance could occur in the present 

In addition, this velocity dependence has been derived by putting a typical 

2 

Equation (36) may be particularly suitable for calculations in  certain types 

of noise fields. The equations for the sound radiation from a propeller may 

be found using many different approaches, but the method presented i n  

Section 3 i s  particularly convenient since the force i s  constant relat ive to 

the moving system. In the Same way it may be possible, theoretically or 

experimentally, to find paths such that T.. i s  substantially constant along 
' b  

them. The calculation of the noise f ie ld  using equation (36) would then be 

straightforward. The strength of the acoustic stress distribution i s  unaffected 

by the system used to calculate i t s  sound radiation. 

to be essentially dependent on pv. v 

these velocities are s t i l l  measured relative to the undisturbed atmosphere. 

The strength continues 

as shown by Lighthi l l  (1952), and 
' i  

The calculation of the radiation from an extended distribution represents a 

further problem. It may be noted that the concentrated acoustic stress 



considered in  equation (36) i s  a representation of a turbulent eddy under 

Lighthi l l 's (1954) hypothesis that the turbulence may be considered, for 

sound radiation purposes, as a collection of independent point quadrupoles, 

one in each "correlation volume". But considerably more analysis w i l l  be 

required before the fu l l  implications of equation (36) become apparent. 



Conclusions 

I t  has been shown that the radiative pressure f ie ld for a point force in 

arbitrary motion i s  given by 

1 

This expression reduces to the previously obtained result for the case of uniform 

rectilinear motion as quoted by Lighthil l  (1962), and the complete equation 

yields the same result for circular motion of a point force as that obtained by 

Gut in  (1936). The expression shows that a fluctuating force in motion w i l l  

have two components in i t s  radiative sound f ie ld .  The first i s  the conventional 

dipole term due to the time rate of change of the force, and the second i s  

essentially a quadrupole term due to the acceleration of the system in which 

i t  i s  acting. This second term gives rise to radiated sound even when the 

force i s  constant. The vortex noise in  rotating systems and helicopter main 

rotor noise provide two examples where the above equation may usefully be 

applied . 

The arguments that lead to the above expression may be applied to the point 

source in  arbitrary motion, and give the radiated sound f ie ld  for this case as 



This result differs from the genera 

even for the case of convection a 

aQ 0 
-I- 

1 - M  at 
r 

at 

ly  accepted result by a factor of ( 1  - Mr) 

constant velocity. This disagreement has 

been shown to be the result of the neglect of the momentum terms i n  the 

derivation of the classical result. The classical result i s  mathematically 

val id, but should not be directly applied to a real physical situation. 

above result also shows how the sound radiation from a "simple sour-ce" 

i n  arbitrary motion w i l l  in fact consist of pure monopole, dipole and 

quadrupole terms. The quadrupole term w i l l  s t i l l  exist even for a non- 

fluctuating source in  accelerated motion, such as a tip iet  rotor. 

The 

The expression for the sound f ie ld  generated by a point acoustic stress i n  

arbitrary motion has also been derived. It i s  

P =  45r a *  r3 ( 1  - M ) 3 
0 r 

r 
a 2 T.. aT.. 3 at r + a2M 

aM 
T.. 

n 

i - M  a t L  
r r 

1 a tL at  i - M  

3 T.. 

( 1  - M )2  

It + 
r 



The relationship of this result to the case of the convected point source and 

point force has been shown. 

for uniform recti l inear motion and, as before, the effect of the acceleration 

terms i s  to produce higher order poles in  the radiated sound f ie ld .  

possible that the result w i l l  have both theoretical and practical applications, 

for example, to deflected (and thus accelerated) rocket exhaust flows. 

a l l  three cases the effect of an extended distribution of acoustic sources 

can be determined by an integration over the region of action (taking 

appropriate account of retarded time), and in a l l  cases the effect of the 

acceleration terms becomes greater as velocity i s  increased. 

The result reduces to that of Lighthil l  (1952) 

It i s  

In 

Note: This work was init iated while the author was at the Institute of Sound 

and Vibration, Southampton, England. 
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